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Abstract: Forecasting financial time series is a fundamental challenge in finance and econometrics, largely due to the 

complexity of volatility dynamics and interdependencies among assets. This study evaluates and compares the 

forecasting performance of MGARCH models, BEKK GARCH and DCC GARCH, with two deep learning 

networks, Single LSTM and BiLSTM, across short, medium and long-term forecast horizons. Two datasets, 

comprising simulated data and bank stock data were used. Forecast accuracy was assessed using Root Mean Squared 

Error (RMSE) on both simulated data and real-world stock returns. The findings from simulated data reveals that 

deep learning models, particularly BiLSTM, consistently outperform traditional GARCH models, with performance 

gains increasing over longer horizons. Similar trends are observed in the real data, where LSTM networks maintain 

lower RMSE values, indicating greater robustness in capturing complex time series patterns.  

Keywords: Multivariate Time Series, Forecasting, MGARCH, Deep Learning, LSTM, Rooted Mean Square Error 

(RMSE). 

I.   INTRODUCTION 

Forecasting financial time series is a crucial task in finance and econometrics, particularly for modeling volatility dynamics 

and capturing interdependencies among assets. Accurate and reliable forecasts are essential for informed decision-making 

in areas such as risk management, asset allocation and economic policy formulation. However, this task remains 

exceptionally challenging due to the intrinsic complexity of financial markets, which are characterized by high volatility, 

stochastic behavior and intricate interdependencies among variables. The ability to anticipate asset price movements, 

volatility dynamics and cross-asset correlations confers a significant strategic advantage, enabling market participants to 

optimize investment strategies, mitigate risks and design responsive policy interventions [1]. 

Conventional econometric models, particularly those in the Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity (MGARCH) framework, are widely employed to model financial volatilities and relationships, 

successfully capturing time-varying covariances and volatilities in financial markets [2]. However, they rely on assumptions 

of linearity and stationarity, which are restrictive for real-world financial data that often exhibit structural breaks, long-

memory dependencies and nonlinear dynamics [3]. As a result, traditional models struggle to capture complex patterns, fat-

tailed distributions and market shocks, leading to diminished forecasting accuracy, particularly in volatile or rapidly 

changing markets.  

Given the limitations of traditional econometric models, recent advances in machine learning, particularly deep learning, 

have introduced more flexible alternatives for forecasting financial time series. Architectures like Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) networks have proven effective in capturing nonlinearities, long-
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term dependencies and non-stationary patterns inherent in financial data [4]. LSTMs, a type of recurrent neural network, 

excel at modeling sequential data by learning complex temporal structures directly from raw inputs, bypassing the need for 

predefined parametric assumptions [5]. Variants such as Stacked and Bidirectional LSTMs further enhance predictive 

performance, making them highly suitable for multivariate forecasting tasks in volatile, data-rich financial environments 

[6]. These models have shown promise in applications such as asset price prediction, risk assessment and market regime 

detection [7].  

[8] compared three models for forecasting daily financial time series: Bivariate Neural Networks (NN), NN-based fuzzy 

time series and an NN-based fuzzy model incorporating substitutes. Their findings indicated that the model with substitutes 

variables achieved the highest accuracy, while the standard NN-based fuzzy model was the least effective. [3] reviewed 

MGARCH models, noting trade-offs between flexibility, simplicity and interpretability. Although models like BEKK and 

DCC captured key volatility dynamics, they were limited in handling nonlinearities and regime shifts. [9] compared neural 

networks and conditional heteroscedastic models like ARCH and GARCH for forecasting exchange rate series, finding that 

neural networks, particularly RBF networks, outperformed traditional econometric models in predictive accuracy. 

Recent studies have highlighted the superior performance of deep learning methods in financial forecasting. [10] found that 

LSTM models significantly outperformed ARIMA, particularly in modeling nonlinear and long-term dependencies. [11] 

demonstrated that advanced LSTM variants, especially those with attention mechanisms, enhanced prediction accuracy and 

robustness in stock market forecasting. Similarly,[12] showed that deep learning models, including BiLSTM and Stacked 

LSTM, consistently outperformed MGARCH models, especially under high-volatility market conditions, emphasizing the 

adaptability of deep networks to complex financial patterns. Additionally, [13] compared ARIMA and LSTM models for 

foreign exchange forecasting, finding that LSTM models provided more accurate predictions, underscoring the advantages 

of deep learning approaches in capturing complex market dynamics. This study aims to evaluate and compare the 

forecasting accuracy and robustness of MGARCH models and LSTM networks for multivariate financial time series. 

II.   MATERIALS AND METHODS 

Data  

This study utilizes two datasets: one simulated and one real-world, to evaluate the forecasting performance of MGARCH 

and LSTM models under different conditions. The simulated dataset was generated using a multivariate stochastic process 

designed to replicate key characteristics of financial time series. The real-world dataset consists of daily closing prices of 

GTCO, FBN and Zenith Bank from February, 2012, to December, 2023. Figure one  

Figure 1 shows three simulated asset all displaying non-stationary, volatile behavior. Variable1 trends downward, Variable2 

fluctuates mid-range and Variable3 rises with growing volatility. For the Bank Stock (Figure 2), the price, all assets show 

cyclical price behavior, with Zenith and GTCO experiencing greater growth and price swings, while FBN remains relatively 

subdued. 

 

Figure 1: Time series plot of Simulated Datasets   Figure 2: Time series plot of Bank Stocks Datasets 
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Asymmetric Baba-Engle-Kraft-Kroner GARCH (BEKK-GARCH) Model 

The Asymmetric BEKK-GARCH model, an extension of the standard BEKK formulation by [14], was proposed by [15]. 

It introduces an additional term to capture asymmetries in the response of volatility to past shocks. This extension allows 

the model to reflect the leverage effect, where negative shocks increase volatility more than positive ones of the same 

magnitude. The model is expressed as: 

Ηt = CC′ + Aεt−iεt−i
′ A′ + GΗt−iG

′εt|ψt−i~N(0, Ht)                                                            (1) 

Where;  

Ηt: N x N conditional variance covariance matrix, 

C: N × N lower triangular matrix of constants; 

A: N × N matrix capturing past innovations;  

G : N × N matrix capturing past covariances; 

εt : N × 1 innovation vector; 

ψt−i : Information set at time t − i.  

Dynamic Conditional Correlation (DCC- GARCH) 

The DCC-GARCH model, proposed by [16], extends the Constant Conditional Correlation (CCC) model to allow for time-

varying correlations. The conditional variance-covariance matrix Ηt is given by: 

Ηt = DtRtDt                                                                                                                  (2) 

Where;  

Dt is a diagonal matrix of conditional standard deviations and Rt is a matrix of conditional correlations. The Dynamic 

Conditional Correlation process is specified as: 

Qt = (1 − α − β)Q̅ + αμt−1μt−1
′ + βQt−1                                                                         (3) 

Where Qtis the dynamic conditional correlation matrix at time t. Q̅ is a diagonal matrix containing the standardized 

innovations, μt−1is a vector of standardized innovations at time t − 1, α and β are parameters controlling the persistence of 

the correlation dynamics 

Long Short Term Memory Networks (LSTM) 

Long Short-Term Memory (LSTM) networks, introduced by [17], are a type of recurrent neural network (RNN) designed 

to capture long-term dependencies in sequential data. Unlike traditional RNNs, LSTMs use memory cells with specialized 

gates; input, forget and output gates that regulate the flow of information, enabling the model to retain and update memory 

states over time. 

i. Forget gate layer: Determines what proportion of the previous cell stateCt−1 to retain 

ft = σ(Wf ∙ [ht−1, xt, ] + bf)                                                                                                      (4) 

ii. Input Gate Layer: Controls which new information to store in the cell state: 

it = σ(Wi ∙ [ht−1, xt] + bi)                                                                                                       (5) 

gt = tanh(Wg ∙ [ht−1, xt] + bg)                                                                                                       (6) 

Cell state update: Combines the retained memory and new information: 

Ct = ft ∗ Ct−1 + it ∗ gt                                                                                                              (7) 

iii. The output gate layer: Determines the output based on the updated cell state: 

ot = σ (Wo ∙ [ht−1, xt] + bo)                                                                                                       (8) 
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ht = Ot ∗ tanh(Ct)                                                                                                            (9) 

Where:  

xt: Input at time t. 

ht, ht−1: Current and previous hidden states is the hidden state or output at time t 

Ct, Ct−1:  Current and previous cell state 

it, ft, ot and gt: Input, forget, output and candidate vectors 

σ: Sigmoid activation function 

tanh: Hyperbolic tangent activation function 

Wf, Wi, Wo and Wg: Weight matrices for the respective gates. 

bi, bf, bo and bg: Bias vectors for the respective gates 

∗: Element-wise (Hadamard) product 

 

Figure 3: LSTM cell diagram 

Single LSTM: A unidirectional LSTM processes input sequences from the beginning to the end, capturing temporal 

dependencies in a forward manner. It is suitable for modeling time series where past data points are the primary predictor 

of future values. 

Bidirectional LSTM (BiLSTM): Introduced by Schuster [18], this variant processes input sequences in both forward and 

backward directions, allowing the network to capture dependencies from both past and future contexts. Bidirectional LSTMs 

are particularly useful for tasks where information from both the past and future may enhance the prediction, as they can 

better handle complex temporal patterns. 

         

Figure 4: Single LSTM Architecture        Figure 5: Bidirectional LSTM Architecture 
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Performance Metrics 

The Root Mean Square Error (RMSE) is a metric that calculates the square root of the average squared differences between 

the actual and predicted values. The formula for RMSE is: 

RMSE = √
1

n
∑ ∑(yit − ŷit)

2

p

i=1

n

t=1

                                                                                                   (10) 

Where yit is the actual observed value of ith variable in the period t and ŷit is the estimated value of ith variable in the same 

period, n is length of the set and p is the number of variables in the multivariate time series 

III.   RESULTS AND DISCUSSION 

This section presents the statistical characteristics of the datasets and compares the forecasting accuracy of MGARCH 

models and LSTM networks across multiple forecast horizons. 

Descriptive Statistics 

Descriptive statistics reveal key patterns, anomalies and volatility characteristics of the return series for both the simulated 

data and Nigerian bank stocks. Figure 5 demonstrates typical financial time series features in the simulated returns, including 

volatility clustering and mean-reverting, stationary behavior. Variable 3 shows more persistent volatility, particularly in 

later periods, with increasing divergence from Variable 2. Figure 6 depicts similar patterns in the bank stock returns, 

showing clear volatility clustering and stationarity. 

     

Figure 6a: Time series plot of Simulated Returns          Figure 6b: Time series plot of Bank Stocks Returns 

Table I summarize the statistical properties of simulated return series and selected bank stocks. All return series show near-

zero means, indicating minimal long-run bias and moderate volatility levels, with FBN being the most volatile among the 

bank stocks. Distributions are generally non-normal, as evidenced by skewness, excess kurtosis and strongly rejected 

Jarque-Bera (JB) tests. This suggests the presence of asymmetry and fat tails. The Augmented Dickey-Fuller (ADF) test 

results confirm stationarity across all series, while significant Lagrange Multiplier (LM) test outcomes indicate the presence 

of ARCH effects. Together, these support the use of GARCH-type models for capturing time-varying volatility in both 

simulated and actual return. 

TABLE I: Descriptive statistics of Return 

Metric Simulated Variables Bank stocks 

Variable 1 Variable 2 Variable 3 GTCO FBN Zenith 

Mean -0.0009 -3.017e-04 2.346e-04 0.0004 0.0003 0.0004 

Median -0.0004 4.849e-05 7.360e-06 0.0000 0.0000 0.0000 

Min -0.1206 -1.616e-01 -1.848e-01 -0.1328 -0.1054 -0.2615 
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Max 0.1834 1.319e-01 1.807e-01 0.0974 0.0976 0.0972 

Std. Dev. 0.0274 0.0263 0.0288 2.2132e-02 2.7299e-02 2.3675e-02 

Skewness 0.2260 -0.1629 -0.2241 -0.1297 0.2149 -0.6324 

Kurtosis 6.7358 5.6819 7.2295 4.5844 2.8012 9.4188 

JB Test 2088.5*** 1484.7*** 2404*** 2588.6*** 986.57*** 11083*** 

ADF Test -10.539*** -10.846*** -9.8927*** -14.167*** -13.333*** -15.122*** 

LM Test 228.09*** 89.895*** 108.53*** 283.85*** 265.78*** 164.34*** 

     ***Significance at the 1% level 

Unconditional correlations (Table II) shows that the simulated variable 1 and variable 2 exhibit a strong positive correlation, 

suggesting they move together closely, while correlations involving variable 3 are weak and near zero, indicating minimal 

association.  

Table II: Correlation Matrix for Simulated Variables 

 Variable 1 Variable 2 Variable 3 

Variable 1 1.0000   

Variable 2 0.0347 1.0000  

Variable 3 0.7203** -0.0981 1.0000 

                                           **Significance at the 5% level. 

Table III shows the correlation matrix for the bank stock returns. Zenith and GTCO returns exhibit a strong positive 

correlation, suggesting they often move together, possibly due to similar market exposures or macroeconomic factors. 

Zenith also shows a moderate correlation with FBN, while GTCO and FBN display a weak association, indicating largely 

independent return behavior between these two. 

Table III: Correlation Matrix for Bank Stock Returns 

 GTCO FBN Zenith 

GTCO 1.0000   

FBN 0.5680** 1.0000  

Zenith 0.1432 0.7304** 1.0000 

                                              **Significance at the 5% level. 

Forecast Accuracy 

This table presents the Root Mean Square Error (RMSE) of the forecasting models over short, medium and longterm forecast 

horizons for both simulated and bank stocks returns. The Single LSTM consistently yields the lowest RMSE across all 

horizons for simulated data, indicating superior forecasting accuracy. For bank stocks, BiLSTM outperforms others at short 

horizons, while Single LSTM remains competitive. Traditional GARCH models, particularly BEKK GARCH, perform 

moderately well, but lag behind LSTM-based models, especially over longer horizons. 

Table IV: Forecasting Accuracy (RMSE) of Models Across Horizons 

Model Forecast Horizon 
Simulated Bank Stocks 

RMSE RMSE 

BEKK GARCH 

Short Term 0.01121 0.007944 

Medium Term 0.01604 0.013342 

Long term 0.02429 0.018651 

DCC GARCH 

Short Term 0.021714 0.018034 

Medium Term 0.022494 0.022172 

Long term 0.030651 0.02638 
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Single LSTM  

Short Term 0.010484 0.007174 

Medium Term 0.014152 0.011147 

Long term 0.02379 0.01731 

BiLSTM Short Term 0.00561 0.00671 

Medium Term 0.01002 0.010927 

Long term 0.017292 0.01244 

 

 

Figure 7: RMSE across Forecast Horizons for Simulated Data    Figure 8: RMSE across Forecast Horizons for Simulated Data 

Figures 7 and 8 present the RMSE values for four forecasting models across short, medium and long-term horizons for both 

simulated data and real bank stock data, respectively. In both cases, the DCC GARCH model exhibits the highest RMSE, 

indicating the poorest performance, while the BEKK GARCH model performs marginally better. The LSTM-based models, 

particularly BiLSTM, consistently achieve the lowest RMSE values across all horizons, demonstrating their superior 

accuracy and robustness in volatility forecasting. 

 

Figure 9: BiLSTM Estimation on Simulated Data                     Figure 10: BiLSTM Estimation on Bank Stock 

Figures 9 and 10 compare the actual and BiLSTM-forecasted volatilities of simulated variables and bank stocks over time, 

demonstrating that the BiLSTM model effectively captures volatility trends. 

IV.   CONCLUSION 

This study compares the performance of MGARCH models and deep learning networks in forecasting multivariate volatility 

using simulated and real-world bank stock data. The BiLSTM model, employed as a forecasting framework, demonstrated 

superior performance by achieving the lowest RMSE across all forecast horizons. In particular, BiLSTM exhibited strong 

predictive accuracy in long-term forecasts, effectively capturing complex, nonlinear dependencies that traditional models 

fail to represent. These findings affirm BiLSTM’s robustness and suitability for modeling the dynamic behavior of financial 

time series. 
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